
Minimizing Queue Variance Using Randomized Deterministic Marking

Na Li
Ashley Laurent Inc.

Gustavo de Veciana, Sangkyu Park, Marissa Borrego, San-qi Li
Department of Electrical and Computer Engineering

University of Texas at Austin

Abstract— Recent work on congestion control in TCP/IP networks
combines improved end-user transmission mechanisms with active queue
management schemes at network routers. An active queue management
scheme consists of two stages. In order to stabilize the queues at a router,
one must first determine an appropriate packet marking probability given
the current degree of congestion. Second, in order to realize the desired
marking probability, an effective packet marking algorithm needs to be
implemented to decide which packets should be marked. Recently, re-
searchers have increasingly focused on the first stage, namely determin-
ing the fraction of packets to mark, overlooking the fact that for a given
marking probability, various possible marking algorithms result in dif-
ferent queue variance, and thus loss, delay, and jitter. In this paper we
propose a marking algorithm DREAM. DREAM decouples the functions
of reducing queue variance and randomizing the phases of flows. Com-
pared to existing schemes, it significantly reduces queue variance while
avoiding flow synchronization. Based on a simple Markov chain model we
explain why our scheme is superior. Our simulation results confirm its ef-
fectiveness. Furthermore, DREAM is simple to implement and has much
lower overhead as compared with existing mechanisms.

Keywords— queue variance, RED, TCP, congestion control, active
queue management

I. INTRODUCTION

TCP plays a critical role in reducing packet losses and avoid-
ing congestion collapse [7] in the Internet. However, there are
still some performance issues [12]. For example, flow syn-
chronization can occur when congested routers drop all incom-
ing packets with no more buffer avaiable. By synchronization,
we mean that a large number of flows concurrently increase
and decrease their congestion windows, and thus their sending
rates. This results in periods of queue overflow followed by
periods of queue underflow. When such oscillation persists, it
may reduce network utilization. In other cases it simply adds
to the queue variance and thus jitter experienced by packets in
the network.

It is recognized that more proactive steps are needed to not
only recover from periods of congestion, but also avoid con-
gestion and achieve high network resource utilization [9]. This
has prompted the IETF to recommend the use of active queue
management [2] in conjunction with Explicit Congestion No-
tification (ECN) [6].

Active queue management at network routers attempts to
improve performance by monitoring the queue size. When the
queue is building up, it marks or drops some incoming packets
to indicate the onset of congestion. Our goal is to spread out
congestion notifications over time, rather than sending them
out in a burst as dropping packets from the tail of a queue.
In this way, TCP flows can gradually reduce their total send-
ing rates before severe congestion occurs. The frequency and

duration of congestion are reduced. This may reduce packet
loss, improving utilization and reduce queuing delays and jit-
ter. Randomness is added in this mechanism to eliminate bi-
ases against some flows, which could occur in a deterministic
system [4]. Furthermore, randomness is highly desirable to
avoid flow synchronization, as is discussed in the next section.

An active queue management scheme consists of two stages.
To stabilize the queue size, one determines an appropriate
marking probability given the current congestion state. Sec-
ond, one realizes this target marking probability via a marking
algorithm. Recent research work has increasingly focused on
the first stage, namely finding an appropriate marking prob-
ability. Previous proposals include Random Early Detection
(RED) [5], and Stabilized-RED (SRED) [11]. As a new ob-
servation, we have found that for a given marking probability
different marking schemes may result in very different mark-
ing intervals (the number of packets between adjacent marks)
of individual flows, as well as queue variance at routers. The
larger the queue variance, the more buffer is required to sup-
port TCP traffic. For a given queue size, a queue with larger
queue variance is likely to see a higher packet loss ratio, and
results in lower bandwidth utilization and higher delay jitter.
Therefore, we believe it is also critical to minimize the queue
variance via an appropriate marking scheme.

Packet marking at routers can be applied to either aggre-
gate traffic or individual flows. Within a Differentiated Service
(Diffserv) network [3], aggregated marking is most likely used
at the core routers [2], and per-flow marking is appropriate
for the traffic conditioner at the edge routers [1]. Aggregated
marking has low overhead since packets of different flows are
stored in the same queue. Roughly speaking, more evenly dis-
tributed marks within an aggregate flow leads to more even
marks within individual flows. However, it is difficult to en-
force that marks be uniformly distributed among and within
flows. Per-flow marking requires per-flow queuing, but enables
control over the marking intervals of individual flows. The fol-
lowing marking schemes can be used for both cases.

The rest of the paper is organized as follows: Section II dis-
cusses the origins of queue variance to get an idea on how to
tackle this problem. Related work is presented and some com-
ments are given in Section III. The DREAM algorithm is de-
tailed in Section IV. The analysis is omitted in this paper, but
available at [10]. The simulation results and comparisons to
existing algorithms are found in Section V. Finally, Section VI
concludes the paper.

(a) time

Window

(b) time

Window

(c) time

Window

Fig. 1. The relative phases of TCP flows.

II. QUEUE VARIANCE ANALYSIS

The queue variance at a network router is determined by the
variability of individual TCP congestion window processes and
the relative phases of the flows passing through the router. Intu-
itively, the smoother the individual windows are, the smoother
the total arriving rate at a network router will be, as well as
the queue variance. As to the relative phases of flows, there
are three major scenarios: out of phase, in phase, and random
phase. The most favorable case is that where all flows are co-
ordinated and are uniformly “out of phase”. In the case of two
flows, the peaks of their congestion windows are perfectly in-
terleaved, as shown in Fig. 1(a). It is possible for this situation
to occur naturally, but difficult to guarantee it will occur con-
sistently.

The least favorable case is that where all or most of the flows
are in phase. They increase and decrease their windows almost
at the same time. This scenario is illustrated in Fig. 1(b). This
situation could also happen naturally, and could persist in a de-
terministic system. The system must avoid being locked in this
state since the aggregate variance is large. A more desirable
scenario is one where flows have roughly random phases (Fig.
1(c)).

We assume the ideal saw-like congestion control window
pattern of TCP Reno [14] during congestion avoidance, and
want to justify the performance differences among the out of
phase, in phase, and random phase scenarios. Consider

�
flows with the same Round Trip Times (RTTs) and passing
through a single bottleneck. The window size of an individ-
ual TCP flow is a random process over time. We denote it as�

, and its average as
�

. The throughput of a flow � is also
a random process, and its average is � . The capacity of the
bottleneck router is constant and denoted by � . To simplify
the derivation, we assume that the buffer size of the router is
infinite and never empty. The relations between the

�
, � ,

�
,

� , and � are approximately

� �
�
� �����

� � �� �� � �
	 � ���� � (1)

The variance of the window size
�

can be easily derived
as
�

varies uniformly distributed on the interval [� � , � �],
giving

VAR � ��� �
�
��� � � � (2)

From the above equations, the variance of � is derived as

VAR ��� � �
�

� ��� � VAR � ���

�
�

��� � ��� �
� �

� � ���� � � � (3)

When all flows are perfectly out of phase, the aggregated
window size of all flows is uniformly distributed in [

� 	 ���� � ,
� 	 ��� � �]. Therefore, the variance of the aggregated

window size is
�
���
� � , and the variance of the total arrival rate

is still "!����# ! . When all flows are in phase, the aggregated win-
dow size of all flows is uniformly distributed in [� � 	 � ,
� � 	 �]. Therefore, the variance of the aggregated window

size is
�
��� �
� 	 ��� � , and the variance of the total arrival rate is

 $!�%� . If the phases of all flows are identically but independently
distributed variables, the variance of the total arrival rate is the
summation of individual variances, and is equal to "!����# . The
results are summarized in Table I.

We now consider how these scenarios scale. Generally, the
required buffer at a router is proportional to its queue standard
deviation given a packet loss ratio. Suppose the link bandwidth
increases linearly with the number of flows

�
supported by the

system (�'& �), i.e., the bandwidth of each flow is a constant.
When all flows are out of phase, the variance of the arrival rate
at the router is independent on the flow number. Theoretically,
the same buffer size is enough to support an increasing num-
ber of flows with the same performance. The system is highly
scalable. When all flows have totally random phases, the vari-
ance increases linearly with the flow number, i.e., the buffer

TABLE I

VARIANCE OF TOTAL ARRIVAL RATE VS. FLOW PHASE CHARACTERISTICS

In phase Random phase Out phase

 "!��� $!�%�(# "!�%�(# !

allocated to each flow decreases as the square root of the flow
number

�
. Therefore, it is beneficial to aggregate more flows

through a larger pipe to benefit from the statistical multiplex-
ing gains. When all flows are in phase, the buffer per flow is
the same when the capacity scales up, i.e., there is no statistical
multiplexing gain and the system is not scalable. As a compro-
mise among these scenarios we prefer to ensure, the random
phase scenario is in force. Therefore, our control goal is to re-
duce the individual window variance, and randomize the flow
phases.

Two major factors contribute to the individual window vari-
ance. The first one is the linear increase and exponential de-
crease of the TCP congestion window. Unless the TCP con-
gestion control mechanism is modified, such variance cannot
be reduced. TCP congestion control algorithm sets the min-
imum possible range on which its congestion window varies.
Given an average window size

�
, the smallest range on which

the window size
�

varies is
� � � � � � �� . Secondly, the packet

number between two marks of a flow also affects the individual
window variance. If consecutively marked packets of a flow
are too close, TCP congestion window can drop below � � .
On the other hand, if the intervals between marked packets are
too large, the window can increase beyond � � . Both cases
result in larger window variance, consequently, larger queue
variance. According to our simulation results, the more varia-
tion in the number of packets between two marks for a given
flow, the larger the queue variance is. Therefore, a good mark-
ing scheme should distribute marks as uniformly as possible
among and within flows, resulting in a reduction of the queue
variance.

III. RELATED WORK

In this section, we describe current marking algorithms
given a desired marking probability � . Floyd originally dis-
cussed the question of how to mark packets given a marking
probability [5]. The goal was to randomly mark packets but at
fairly regular intervals.

A natural solution is to mark incoming packets with prob-
ability � , which we call Random Marking (RM) in this paper.
However, the marking interval, i.e., number of unmarked pack-
ets between two that are marked, is geometrically distributed.
The memoryless nature of this approach cannot guarantee a
regular distribution of marks.

Floyd then proposed to introduce correlation in packet mark-
ing [5], and this approach is referred as Uniform Random
Marking (URM). A counter � is used to keep the number of un-
marked packets that have arrived since the last marked packet.
After each marking, the counter � is reset to be zero. Given the
constant marking parameter � , the actual packet-marking prob-
ability ��� ��� � increases quickly with the counter increment:

��� ��� � � �� � � 		� � (4)

It is proved that the number of arriving packets between

marked packets is a uniform random variable in
� �
�
�
 � . Simula-

tion results also show that URM distributes marks more evenly
than RM does. Note that RM can be expressed as

��� ��� � ���$� (5)

URM attempts to reduce the interval variation while keeping
the randomness of marking. However, our simulations show
that in some scenarios, the queue variance of URM is even
higher than RM since URM increases �� ��� � aggressively, par-
ticularly when � is large.

A more mild approach, referred as Wait Uniform Random
Marking (WURM) is implemented in the NS-2 simulator. It
also introduces correlation in packet marking [15]. In con-
trast to URM, WURM waits for a while after a marked packet,
and increases � � ��� � more slowly than URM does. The actual
packet-marking probability � � ��� � is given by

������� � �
�� ��� if � 	���� � �

�������
 if

��� � 		��� � ��
otherwise �

(6)

The problem is that when � takes certain values, � � ��� � may
see a big jump as a function of � , i.e., is not very “smooth”.
Table II shows the numerical values of �� ��� � versus � when �
is below 0.5 and above 0.5. The average final marking proba-
bility � � is

� for � � � ��� � , and � � for � � � � � . As a result,
under some scenarios, we cannot achieve the desired marking
probability. A lower actual marking probability � � has drop-
tail like behavior, and larger value results in persistent queue
underflow.

A further modification to WURM is

� � ��� � �
�� � � if � 	���� � �

�������
 if

��� � 		��� � ��
otherwise �

(7)

We call this variant as Slow Random Marking (SRM). It is less
aggressive than URM and avoids the discontinuity problem of
WURM.

IV. DREAM: DETERMINISTIC MARKING WITH RANDOM

ALIGNMENT

From the above discussion of related work, we observe that
introducing correlation makes the marking more predictable
and smoothes out the marking interval. It helps to reduce queue

TABLE II

DISCONTINUITY OF WURM AROUND !#"%$'& (
� � ��� � �� � ��� � 0.5
1 0 0
2 0 0.5
3

� � 1

p : marking probability
U : uniform random variable in [0,1)� : number of unmarked packets since the last mark

On receiving an incoming packet
if(��� �
)� � �
else

mark the packet
generate a value of U
if(
� � � ���)� ��� � �
 � �

else� ��� � �
 � �
Fig. 2. DREAM Algorithm

variance by reducing the individual flow variance. In fact, De-
terministic Marking (DM), i.e., marking a packet every

�
 pack-
ets, results in constant marking intervals, and therefore should
have the smallest queue variance. Unfortunately, synchroniza-
tion among flows is a concern with deterministic marking. The
previous approaches all add randomness by randomly marking
packets, based on a state-dependent probability. As more and
more correlation among packets is introduced, less and less
randomness is left. Reducing per-flow variance and randomiz-
ing the flow phases appear to be two conflicting goals.

Instead of continuing in the above direction and introduc-
ing more delicate mechanism, we take a different path towards
solving this problem and propose DREAM, a Deterministic
with Random Ergodic Alignment Marking scheme. DREAM
decouples the functions of reducing the making interval vari-
ance and randomizing the phase of flows. Deterministic mark-
ing can guarantee that marks are evenly spaced, therefore keeps
the queue variance small. On the other hand, adding a small
random shift to the marking interval randomizes the phases of
flows, and therefore reduces the likelihood of synchronization.

A. Algorithm

The actual packet-marking probability �� ��� � of DREAM is
given by ��� ��� � � � � if � 	���� � ��

otherwise � (8)

The pseudo code for the algorithm is exhibited in Fig. 2.
When the number of unmarked packet � is below

�
 , the
counter � is increased by one. Otherwise, the incoming packet
is marked. Such counting and marking form a deterministic
process. At the same time, the phase of the flow, i.e., the
state of the embedded random walk process [8], is updated by
adding an independent random variable with equal probabil-
ity of being one or minus one at the start of each interval. The
state space of the random walk is [0,

�
). The state wraps around

back to zero when it exceeds
�
 . The formal definition of a flow

phase and theoretical analysis are given in [10].

n0

src

n1

n2

n3

n4 n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

dst

bottleneck

Fig. 3. Simulation topology.

Note that
�
 may be a parameter with double precision. The

counter � can be implemented as an integer variable, or a vari-
able with double precision. Making � a double variable can
keep the residual amount of the last marking and realizes the
marking probability precisely.

Besides its good performance, DREAM has very low im-
plementation overhead. For DREAM, one counter update is
performed at each packet arrival. A random number is gen-
erated only when ��� �
 . Also note that DREAM does not
require using floating point calculations. On the other hand, all
the other approaches (URM, WURM, and SRM), have to gen-
erate a random number and perform a floating point calculation
of � � ��� � at every packet arrival, as well as performing counter
updates. Therefore, they involve much higher overhead than
DREAM does.

V. SIMULATION RESULTS

The simulator NS-2 [15] was used to asses the proposed
scheme. ECN was enabled. We shall present results for vari-
ous scenarios with different numbers of flows ranging from 40
to 2000 flows. All flows have the same RTTs, go through the
same bottleneck link, and are synchronized at the beginning.
All simulations last for 1000 seconds.

The simulation topology is shown in Fig. 3. All links have
bandwidth of 600Mb/s except the bottleneck link [n4-n5]. To
investigate the mechanism’s scalability, the bandwidth at the
bottleneck increases linearly with the number of flows, adding
0.25 Mb/s per flow. The maximum queue size of each link
is 1800 packets. The marking probability is about 0.07, and
changes slightly with different marking algorithms to bring the
queue size within [0, 1800]. In another word, the utilization
of the bottleneck link is always 100%, and there is not packet
loss.

The queue standard deviation versus flow number with per-
flow marking at the bottleneck link is shown in Fig. 4. DM
results in a very large queue variance. The reason is that
most flows are synchronized initially given the topology setup
and DM has no way to reduce the synchronization. RM re-

0

50

100

150

200

250

0 1000 2000
flow number

qu
eu

e s
td

(pa
ck

et)

RM
DM
DREAM

Fig. 4. Queue standard deviation with per-flow marking.

0

25

50

75

100

0 1000 2000
flow number

qu
eu

e s
td

(pa
ck

et)

RM
SRM
DM
DREAM

Fig. 5. Queue standard deviation with aggregated marking.

duces flow synchronization, and thus achieves substantially
less queue variance compared with DM. By combining deter-
ministic marking with phase randomization, DREAM achieves
the lowest queue variance. The queue standard deviation of
DREAM is almost half of the value of RM for all tested sce-
narios. When SRM is used for per-flow marking, many TCP
flows stop sending packets, therefore, its result is not reliable
and not listed here.

Fig. 5 shows the queue performance with aggregated mark-
ing. RM has the largest queue variance, and DREAM has the
lowest queue variance. RM, SRM, and DREAM are all able
to randomize the flow phases. By reducing the variance of
marking intervals within the aggregated flow to the minimum,
DREAM manages to get the smallest queue variance. It is im-
portant to notice that the queue variance of DM is consistently
larger than that of DREAM for all tested scenarios. A plausible
explanation is that DM exhibits biases among flows by mark-
ing more packets of some flows while favoring some others.
On the other hand, DREAM randomizes the chance a flow gets
marked. Therefore, on average, all flows show similar behav-
iors. Further investigation is necessary to explain the result.

VI. CONCLUSION

In this paper, we propose a Deterministic Marking scheme
with Random Ergodic Alignment (DREAM). DREAM re-

duces queue variance significantly compared with existing al-
gorithms while avoiding flow synchronization. Unlike previ-
ous proposals, DREAM decouples the functions of reducing
variance of marking intervals and randomizing the phases of
flows. A simple analysis helps explain why our scheme is su-
perior to other schemes and simulation results confirm the ef-
fectiveness of our scheme. Furthermore, DREAM is simple to
implement and has much lower overhead than the others.

There are two observations regarding to this solution. Ran-
domness is desirable in various distributed systems to reduce
the global synchronization or avoid biases against certain par-
ties. The manner in which randomization is introduced may
affect the system performance significantly. Furthermore, it is
usually easier to solve a problem by identifying its causes and
decomposing the required functionalities into distinctive mod-
ules.

REFERENCES

[1] Y. Bernet, S. Blake, D. Grossman, A. Smith, “An Informal Management
Model for Diffserv Routers,” IETF draft draft-ietf-diffserv-model-05.txt,
November 2000.

[2] B. Braden, et al, “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet,” IETF RFC 2309, April 1998.

[3] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E. Davies,
“An Architecture for Differentiated Services,” IETF RFC 2475, December
1998.

[4] S. Floyd, V. Jacobson, “On Traffic Phase Effects in Packet-Switched Gate-
ways,” Internetworking: Research and Experience, V.3 N.3, September
1992, p.115-156.

[5] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance,” IEEE/ACM Transactions on Networking, August 1993.

[6] S. Floyd, “TCP and Explicit Congestion Notification,” Computer Com-
munication Review, vol. 24, no. 5, October 1994.

[7] V. Jacobson, “Congestion Avoidance and Control,” In Proceedings of
ACM SIGCOMM, August 1988.

[8] L. Kleinrock, “Queueing Systems volume 1: Theory,” Wiley-Interscience
Publication, New York, 1975, page 23.

[9] C. Lefelhocz, B. Lyles, S. Shenker, L. Zhang, “Congestion Control for
Best-Effort Service: Why We Need a New Paradigm,” IEEE Network,
Juauary/February 1996.

[10] N. Li, G. de Veciana, S. Park, M. Berrego, S. Li, “Minimizing Queue
Variance Using Randomized Deterministic Marking,” full version at
http://64.245.57.34/papers.htm.

[11] T. Ott, T. Lakshman, L. Wong, “SRED: Stabilized RED,” IEEE INFO-
COM’99.

[12] V. Paxson, “End-to-end Internet Packet Dynamics,” in Proc. Of ACM
SIGCOMM, September 1997.

[13] K. Ramakrishnan, S. Floyd, “A Proposal to Add Explicit Congestion No-
tification (ECN) to IP,” IETF RFC 2481, January 1999.

[14] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms,” IETF RFC2001.

[15] “Network Simulator - ns version 2,” http://www-
mash.cs.berkeley.edu/ns/, 1999.

